The EL2099 is a high speed, monolithic operational amplifier* featuring excellent video performance and high output current capability. Built using Elantec's Complementary Bipolar process, the EL2099 uses current mode feedback to achieve wide bandwidth, and is stable in unity gain configuration.

Operation from power supplies ranging from $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ makes the EL2099 extremely versatile. With supplies at $\pm 15 \mathrm{~V}$, the EL2099 can deliver $\pm 11 \mathrm{~V}$ into 25Ω at slew rates of $1000 \mathrm{~V} / \mu \mathrm{s}$. At $\pm 5 \mathrm{~V}$ supplies, output voltage range is $\pm 3 \mathrm{~V}$ into 25Ω. Its speed and output current capability make this device ideal for video line driver and automatic test equipment applications.

Differential Gain and Phase of the EL2099 are 0.03\% and 0.05° respectively, and -3 dB bandwidth is 50 MHz . These features make the EL2099 especially well suited for video distribution applications.

Pinout

EL2099
(5-PIN TO-220)
TOP VIEW

Manufactured under U.S. Patent Nos. 5,179,355, 4,893,091, U.K. Patent No. 2261786.

Features

- $50 \mathrm{MHz}-3 \mathrm{~dB}$ bandwidth, $\mathrm{A}_{\mathrm{V}}=+2$
- Differential gain 0.03\%
- Differential phase 0.05°
- Output short circuit current 800 mA
- Can drive six 75Ω double terminated cables $\pm 11 \mathrm{~V}$
- Slew rate $=1000 \mathrm{~V} / \mu \mathrm{s}$
- Wide supply voltage range $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$

Applications

- Video line driver
- ATE pin driver
- High speed data acquisition

Ordering Information

PART NUMBER	TEMP. RANGE	PACKAGE	PKG. NO.
EL2099CT	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	5-Pin TO-220	MDP0028

Current into $\mathrm{V}_{\mathrm{IN}^{+}}$or $\mathrm{V}_{\mathrm{IN}^{-}}$. $\pm 10 \mathrm{~mA}$ Internal Power Dissipation . See Curves Operating Ambient Temperature Range $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Operating Junction Temperature . $150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_{J}=T_{C}=T_{A}$

Open-Loop DC Electrical Specifications $\quad V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=25 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified

PARAMETER	DESCRIPTION	TEMP	MIN	TYP	MAX	UNITS
V_{OS}	Input Offset Voltage	$25^{\circ} \mathrm{C}$		5	20	mV
		$\mathrm{T}_{\text {MIN }}, \mathrm{T}_{\text {MAX }}$			25	mV
TC V ${ }_{\text {OS }}$	Average Offset Voltage Drift	Full		20		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$+\mathrm{I}_{\mathrm{N}}$	+Input Current	$25^{\circ} \mathrm{C}$		5	20	$\mu \mathrm{A}$
		$\mathrm{T}_{\text {MIN }}, \mathrm{T}_{\text {MAX }}$			30	$\mu \mathrm{A}$
$-_{\text {IN }}$	-Input Current	$25^{\circ} \mathrm{C}$		8	35	$\mu \mathrm{A}$
		$\mathrm{T}_{\text {MIN }}, \mathrm{T}_{\text {MAX }}$			50	$\mu \mathrm{A}$
CMRR	Common Mode Rejection Ratio (Note 1)	$25^{\circ} \mathrm{C}$	50	60		dB
PSRR	Power Supply Rejection Ratio (Note 2)	$25^{\circ} \mathrm{C}$	60	70		dB
R_{OL}	Transimpedance	$25^{\circ} \mathrm{C}$	85	140		$\mathrm{k} \Omega$
$+\mathrm{RIN}^{\text {I }}$	+Input Resistance (Note 3)	$25^{\circ} \mathrm{C}$	700	1000		$\mathrm{k} \Omega$
		$\mathrm{T}_{\text {MIN }}, \mathrm{T}_{\text {MAX }}$	600			$\mathrm{k} \Omega$
$+\mathrm{C}_{\text {IN }}$	+Input Capacitance	$25^{\circ} \mathrm{C}$		3		pF
CMIR	Common Mode Input Range	$25^{\circ} \mathrm{C}$		± 12.5		V
V_{O}	Output Voltage Swing $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	± 9	± 11		V
	Output Voltage Swing $\mathrm{V}_{S}= \pm 5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	± 2.4	± 3.0		V
Iout	Output Current	$25^{\circ} \mathrm{C}$	360	440		mA
ISC	Output Short-Circuit Current	$25^{\circ} \mathrm{C}$	600	800		mA
		$\mathrm{T}_{\text {MIN }}, \mathrm{T}_{\text {MAX }}$		800		mA
Is	Supply Current	$25^{\circ} \mathrm{C}$		32	45	mA

NOTES:

1. The input is moved from -10 V to +10 V .
2. The supplies are moved from $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$.
3. $\mathrm{V}_{\mathrm{IN}}= \pm 5 \mathrm{~V}$. See typical performance curve for larger values of V_{IN}.

Closed-Loop AC Electrical Specifications $\quad V_{S}= \pm 15 \mathrm{~V}, A_{V}=+2, R_{F}=510 \Omega, R_{L}=25 \Omega, T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified

PARAMETER	DESCRIPTION	MIN	TYP	MAX	UNITS
SR	Slew Rate (Note 1) (Note 2)	500	1000		V/us
BW	-3dB Bandwidth (Note 2)		50		MHz
Peaking	(Note 2)		0.3		dB
$\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$	Rise Time, Fall Time (Note 2) (Note 3)		7		ns
dG	Differential Gain; DC Input Offset from OV through $+0.714 \mathrm{~V}, \mathrm{AC}$ Amplitude $286 \mathrm{mV} \mathrm{P}_{\text {-P, }} \mathrm{f}=3.58 \mathrm{MHz}$ (Note 4) (Note 2)		0.03		\%
dP	Differential Phase; DC Input Offset from OV through +0.714 V , AC Amplitude $286 \mathrm{mV} \mathrm{P}_{\text {P-p, }} \mathrm{f}=3.58 \mathrm{MHz}$ (Note 2) (Note 4)		0.05		deg. (${ }^{\circ}$)

NOTES:

1. Slew Rate is with $\mathrm{V}_{\text {OUT }}$ from +5 V to -5 V and measured at 20% and 80%.
2. All AC tests are performed on a "warmed up" part, except for Slew Rate, which is pulse tested.
3. Rise and Fall Times are with $\mathrm{V}_{\text {OUT }}$ between -0.5 V and +0.5 V and measured at 10% and 90%.
4. See typical performance curves for other conditions.

Typical Performance Curves $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=25 \Omega, \mathrm{~A}_{\mathrm{V}}=+2, \mathrm{R}_{\mathrm{F}}=510\right.$ unless otherwise specified)

Typical Performance Curves (Continued)

Typical Performance Curves (Continued)

Typical Performance Curves (Continued)

infut voltage (v)

DC INPUT VOLTAGE (V)

input voltage (v)

Typical Performance Curves (Continued)

TIME ($20 \mathrm{~ns} / \mathrm{DIV}$)

TIME ($20 \mathrm{~ns} / \mathrm{DIV}$)

Simplified Schematic

Burn-In Circuit

Applications Information

Product Description

The EL2099 is a current mode feedback amplifier that has high output current drive capability. It is built using Elantec's proprietary dielectric isolation process that produces NPN and PNP complimentary transistors. The high output current can be useful to drive many standard video loads in parallel, as well as digital sync pulses that are 8 V or greater.

+Input Resistor Value

A small value resistor located in the +Input pin is necessary to keep the EL2099 from oscillating under certain conditions. A 50Ω resistor is recommended for all applications, although
smaller values will work under some circumstances. All tests listed in this datasheet are performed with 50Ω in the +Input pin, as well as all typical performance curves. The 50Ω resistor along with the +Input bias current creates an additional typical Offset Voltage of only $250 \mu \mathrm{~V}$ at $\mathrm{T}=25^{\circ} \mathrm{C}$, and a maximum of 1.25 mV over temperature variations.

Feedback Resistor Values

The EL2099 has been designed and specified with $R_{F}=510 \Omega$ and $A_{V}=+2$. This value of feedback resistor yields extremely flat frequency response with little to no peaking. However, 3dB bandwidth is reduced somewhat because of this. Wider bandwidth, at the expense of slight peaking, can be accomplished by reducing the value of the feedback resistor. For example, at a gain of +2 , reducing the feedback resistor to 330Ω increases the -3 dB bandwidth to 70 MHz with 3 dB of peaking. Inversely, larger values of feedback resistor will cause roll off to occur at a lower frequency. There is essentially no peaking with $R_{F}>510 \Omega$.

Power Supplies

The EL2099 may be operated with single or split supplies as low as $\pm 5 \mathrm{~V}$ (10 V total) to as high as $\pm 18 \mathrm{~V}$ (36 V total). Bandwidth and slew rate are almost constant from $\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$, and decrease slightly as supplies are reduced to $\pm 5 \mathrm{~V}$, as shown in the characteristic curves. It is not necessary to use equal value split supplies. For example, -5 V and -12 V would be fine for 0 V to 1 V video signals.

Good power supply bypassing should be used to reduce the risk of oscillation. A $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ tantalum capacitor in parallel with a $0.1 \mu \mathrm{~F}$ ceramic capacitor is recommended for bypassing each supply pin. They should be kept as close as possible to the device pins.
Due to the internal construction of the TO-220 package, the tab of the EL2099 is connected to the V_{S} - pin. Therefore, care must be taken to avoid connecting the tab to the ground plane of the system.

Printed Circuit Board Layout

As with any high frequency device, good printed circuit board layout is necessary for optimum performance. Ground plane construction is highly recommended. Pin lengths should be as short as possible. For good AC performance, parasitic capacitances should be kept to a minimum, especially at the inverting input, which is sensitive to stray capacitance. This implies keeping the ground plane away from this pin. Metal film and carbon resistors are both acceptable, while use of wirewound resistors is not recommended because of their parasitic inductance. Similarly, capacitors should be low inductance for best performance.

Driving Cables and Capacitive Loads

The EL2099 was designed with driving multiple coaxial cables in mind. With 440 mA of output drive and low output impedance, driving six, 75Ω double terminated coaxial cables to $\pm 11 \mathrm{~V}$ with one EL2099 is practical.
When used as a cable driver, double termination is always recommended for reflection-free performance. For those applications, the back termination series resistor will decouple the EL2099 from the capacitive cable and allow extensive capacitive drive. For a discussion on some of the other ways to drive cables, see the application section on driving cables in the EL2003 data sheet.

Other applications may have high capacitive loads without termination resistors. In these applications, an additional small value ($5 \Omega-50 \Omega$) resistor in series with the output will eliminate most peaking.
The schematic below shows the EL2099 driving 6 double terminated cables, each of average length of 50 feet.
This represents driving an effective load of 25Ω to over $\pm 10 \mathrm{~V}$. The resulting performance is shown in the scope photo. Notice that double termination results in reflection free performance.

EL2099 Macromodel

* Connections: +input
* | -input
*
*
*
*

.subckt M2099
*

* Input Stage
*

e1 100401.0
vis 1090 V
h2 912 vxx 1.0
r15 1150
I1 1112 48nH
iinp $405 \mu \mathrm{~A}$
iinm $50-8 \mu \mathrm{~A}$
*

* Slew Rate Limiting
*

h1 130 vis 600
r2 1314 1K
d1 140 dclamp
d2 014 dclamp
*

* High Frequency Pole
*

*e2 3001400.001667
$1330171.5 \mu \mathrm{H}$
c5 1701 pF
r5 170500
*

* Transimpedance Stage
*

g1 0181701.0
ro1 180 150K
cdp 1808 pF
*

* Output Stage
*

q1 31819 qp
q2 11820 qn
q3 11921 qn
q4 32022 qp
r7 2121
r8 2221
ios1 119 5mA
ios2 203 5mA

* Supply Current
*

ips 13 19mA

* Error Terms
*

ivos 023 5mA
vxx 2300 V
e4 240201.0
e5 250101.0

EL2099 Macromodel (Continued)

e6 260301.0
r9 2423 3K
r10 2523 1K
r11 2623 1K

* Models
*

.model qn npn (is=5e-15 bf=200 tf=0.1nS)
.model qp pnp (is=5e-15 bf=200 tf=0.1nS)
.model dclamp d (is=1e-30 ibv=0.266 bv=5 n=4)
.ends

© Copyright Intersil Americas LLC 2003. All Rights Reserved. All trademarks and registered trademarks are the property of their respective owners.

For additional products, see www.intersil.com/en/products.html

Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com
Page 12 of 12

